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Abstract
We review recent advances made in the phase field modelling of polycrystalline
solidification. Areas covered include the development of theory from early
approaches that allow for only a few crystal orientations, to the latest models
relying on a continuous orientation field and a free energy functional that
is invariant to the rotation of the laboratory frame. We discuss a variety
of phenomena, including homogeneous nucleation and competitive growth
of crystalline particles having different crystal orientations, the kinetics of
crystallization, grain boundary dynamics, and the formation of complex
polycrystalline growth morphologies including disordered (‘dizzy’) dendrites,
spherulites, fractal-like polycrystalline aggregates, etc. Finally, we extend the
approach by incorporating walls, and explore phenomena such as heterogeneous
nucleation, particle–front interaction, and solidification in confined geometries
(in channels or porous media).

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Despite thousands of years of experience and more than a hundred years of scientific
investigation, the formation of polycrystalline matter (technical alloys, polymers, minerals,
etc) is still poorly understood (Cahn 2001). This topical review focuses on recent advances
made in modelling polycrystalline solidification. We distinguish here two main types of
polycrystalline microstructures.

(a) Foam-like multigrain structures formed by impingement of nucleating and growing single
crystals. These structures are familiar to all materials scientists, and are a hallmark of
equiaxed growth in cast materials.

(b) Polycrystalline growth forms in which new grains nucleate at the solidification front.

Examples of such microstructures are shown in figure 1. A typical foam-like structure formed
by competing nucleation and growth is displayed in figure 1(a). The polycrystalline dendritic
pattern shown in figure 1(b) forms when nucleation is combined with chemical diffusion
controlled anisotropic growth. Such a pattern will reduce to something like figure 1(a) if it
is allowed to anneal for sufficient time. In contrast, several polycrystalline growth forms are
presented in figures 1(c)–(j). Particulate additives may transform single-crystal dendrites into
polycrystalline ‘dizzy’ dendrites (figure 1(c)). Spherulites (figure 1(d)), such as those found
in such mundane items as plastic grocery bags, provide a classic example of polycrystalline
growth. This structure has more generally been observed in a wide variety of materials ranging
from pure metals, such as elemental (Se), to nodular cast iron and minerals. The formation of
spherulites often starts with the formation of crystal sheaves of diverging ends (figure 1(e)),
which occasionally develop into less space-filling arboresque structures (figures 1(f) and (g)).
Nearly perpendicular random branching, observed in certain polymers, yields ‘quadrites’
(figure 1(h)). Disorderly growth processes often result in irregular, fractal-like structures
(figures 1(i) and (j)). The specific mechanisms that lead to the formation of such intricate
structures are usually poorly understood. However, nucleation, diffusional instabilities, crystal
symmetries, and foreign particles certainly play important roles.

A possible approach to teasing out the dominant controlling influences in the formation of
such structures is through mathematical modelling. For this, we need a theoretical framework
that is able to incorporate all the important ingredients. Modern theoretical methods combined
with the ever-increasing power of computers offer new answers to such problems. Indeed,
the phase field theory (PFT) has already demonstrated its ability to describe complex single-
crystal morphologies (Boettinger et al 2000, 2002, Ode et al 2001, Chen 2002). In this topical
review, we compile recent results that demonstrate the successful application of this approach
to modelling polycrystalline solidification. The paper’s structure is detailed below.

First, we briefly introduce the phase field method (section 2.1). This is followed by a review
of early models of multi-particle solidification (section 2.2). Subsequently, we outline the use
and properties of the orientation field, a generalization to the phase field method that allows for
the distinguishing of crystallites with different crystallographic orientations and grain boundary
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Figure 1. Polycrystalline microstructures. (a) Foam-like morphology formed by competing
nucleation and growth (Lee and Losert 2004). (b) Polycrystalline dendritic structure formed by
competing nucleation and growth in the oxide glass (ZnO)61.4·(B2O3)38.6·(ZnO2)28 (Nobel and
James 2003). (c) ‘Dizzy’ dendrite formed in clay filled polymethyl methacrylate–polyethylene
oxide thin film (Ferreiro et al 2002). (d) Spherulite formed in pure Se (Ryshchenkow and
Faivre 1988). (e) Crystal sheaves in pyromellitic dianhydrite–oxydianilin poly(imid) layer
(Ojeda and Martin 1993). (f) Arboresque growth form in polyglycine (Padden and Keith
1965). (g) Polyethylene spherulite crystallized in the presence of n-paraffin (Keith et al 1966).
(h) ‘Quadrite’ formed by nearly rectangular branching in isotactic polypropylene (Lotz and
Wittmann 1986). (i) Fractal-like polycrystalline aggregate of electrodeposited Cu (Fleury 1997).
(j) Polycrystalline fractal-like growth form observed in clay filled polyethylene oxide–polymethyl
methacrylate film (Ferreiro et al 2002). To improve the contrast/visibility of the experimental
pictures, they are shown here in false colour.

properties (section 2.3). In section 2.4, we address possible approaches to homogeneous
crystal nucleation, including a quantitative test of theory based on a comparison with atomistic
simulations. Results concerning the competitive growth of continuously nucleating particles
(formation of foam-like structures) as well as the kinetics of crystallization are reviewed in
section 2.5. The formation of polycrystalline growth morphologies (sheaves, axialites, fractal-
like aggregates, spherulites, etc) characteristic to far-from-equilibrium solidification and the
essential factors that govern polycrystalline solidification are covered in section 2.6. Grain
boundary dynamics and heterogeneous nucleation on walls/foreign particles are addressed
in sections 2.7 and 2.8, respectively. Finally, promising ideas that may set future trends of
theoretical development are highlighted in section 3.

2. Phase field theory of polycrystalline solidification

2.1. Field theoretic approach to crystal growth

The phase field technique is described in a number of recent reviews (Boettinger et al 2000,
2002, Ode et al 2001, Chen 2002, Emmerich 2003). Here we recall only its main features
needed for understanding later developments. The phase field theory is a direct descendant
of the Cahn–Hilliard/Ginzburg–Landau type classical field theoretic approaches to phase
boundaries, and its origin can be traced back to a model of Langer from 1978 (see Langer
1986) and others (Collins and Levine 1985, Caginalp 1986). To characterize the local phase
state of matter, a non-conserved structural order parameter φ(r, t) termed the phase field is
introduced. This structural order parameter is considered to be a measure of local crystallinity,
and is often interpreted as the volume fraction of the given crystalline phase. While much
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depends on the approach, a minimum of n structural fields are needed {φi (r, t)} in the presence
of n crystalline phases, and one disordered phase. Certain approaches, such as the multi-phase
field theory by Steinbach et al (1996), introduce a separate phase field for every crystal grain,
and can require thousands of phase fields to properly address multi-grain problems. Even then,
such multi-phase field theories cannot naturally accommodate the formation of new, randomly
oriented grains.

One expands the free energy density (or entropy density) of the inhomogeneous system
(liquid + solid phase(s)) with respect to the structural order parameter(s) {φi}, the chemical
composition field(s) {ci}, the orientation field, etc, retaining only those spatial derivatives
that are allowed by symmetry considerations. The free energy of the system is thus a local
functional of these fields:

F =
∫

dr
{∑

i, j

ai j(∇φi∇φ j ) +
∑
i, j

bi j(∇ci∇c j) + · · · + f [{φi}, {ci}, T, . . .]

}
. (1)

The terms that contain the field gradients account for the interfacial energies. The coefficients
ai j and bi j may depend on temperature, orientation, and the field variables. The free
energy density f ({φi}, {ci}, T, . . .) shows two or more minima that represent bulk liquid and
crystalline phases. While attempts have been made to derive the free energy functional of solid–
liquid systems on physical grounds (density functional theory; review: Oxtoby 1991, 2002),
the molecular theories are often too complicated to address complex solidification problems.
Therefore, in most approaches a phenomenological free energy (or entropy) functional is used,
whose form owes much to the Ginzburg–Landau models used in describing magnetic phase
transitions and phase separation (Gunton et al 1983). Each phase field approach usually differs
in both the field variables considered as well as the actual form chosen for their interaction.
Once the free energy functional is defined, the formalism that describes the time evolution
follows almost automatically.

Following the phenomenology of non-equilibrium statistical mechanics, and relying on
the principle of positive entropy production (or decreasing free energy), partial differential
equations are derived for the evolution of the phase field and other field variables like
concentration or temperature (Langer 1986,Penrose and Fife 1990,Kobayashi 1993,Wang et al
1993, Elder et al 1994, Warren and Boettinger 1995, Caginalp and Jones 1995). The equation
of motion differs for non-conserved fields (such as the structural order parameter, orientation,
magnetization, etc whose spatial integral may vary with time) and conserved fields (whose
spatial integral is constant, e.g., chemical composition):

Non-conserved dynamics: φ̇i = −Mφi

δF

δφi
+ ζi

Conserved dynamics: ċi = ∇
{

Mci ∇
δF

δci

}
+ ζ jc .

Here Mi are the appropriate field mobilities, and we have made the simplifying assumption that
there are no mobility cross couplings between the φi, or between the ci . The ζi are Gaussian
noise terms (random current for conserved quantities) with an amplitude determined by the
fluctuation–dissipation theorem. (On the latter see Elder et al 1994, Karma and Rappel 1999,
Pavlik and Sekerka 1999, 2000; on the Langevin formalism in general van Kampen 2003.) The
evolution of the non-conserved phase variablesφi is thus coupled to those of the conserved fields
(generalized Hohenberg–Halperin model C-type field theory; Hohenberg and Halperin 1977).
These equations of motion are usually highly non-linear, and are able to describe complex
solidification morphologies such as thermally controlled dendrites (Kobayashi 1993, 1994,
Karma and Rappel 1998, Bragard et al 2002) and solutal dendrites (Warren and Boettinger
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Figure 2. Single-crystal dendrites in polymethyl methacrylate–polyethylene oxide film (Ferreiro
et al 2002) and in a phase field simulation performed on a 2000 × 2000 rectangular grid
(26.3 µm × 26.3 µm) at 1574 K and supersaturation S = (cl − c∞)/(cl − cs) = 0.80 using
the thermodynamic and interfacial properties of Ni–Cu, and a 15% anisotropy for the interfacial
free energy. Here c∞, cl , and cs are the initial composition of the liquid, and the liquidus and
solidus compositions. (For details see Gránásy et al (2003c).) The simulation has been made using
model B (see the appendix).

1995, Conti 1997, Loginova et al 2001, Suzuki et al 2002) (see figure 2), eutectic growth
patterns (Karma 1994, Elder et al 1994, Wheeler et al 1996, Drolet et al 2000, Apel et al
2002, Plapp and Karma 2002) and peritectic growth patterns (Nestler and Wheeler 2000, Lo
et al 2001, 2003), banded structures (Conti 1998), and many more. However, one of the main
challenges to the successful application of the phase field method to microstructure formation
is the quantitative prediction of these processes, which has a vast practical importance in
optimizing and designing materials for specific applications.

The primary barrier to accurate, quantitative phase field modelling is resolving the interface
thickness. The diffuseness of the interface is an essential feature of phase field models, and
is due to the square-gradient terms, which penalize sharp changes in the fields. Experiments
(Howe 1996, Huisman et al 1997) and computer simulations (Broughton et al 1982, Laird
and Haymet 1992, Davidchack and Laird 1998) show that the crystal/liquid interface is
indeed diffuse on the molecular scale; the interface region extends to a few nanometres.
This is, however, usually orders of magnitude smaller than the objects of interest; therefore,
practically, a sharp interface is usually an excellent approximation. Thus numerical solution
of the equations, at the resolution required to describe the nanometre thick diffuse interfaces
properly, is, as yet, impossible (in two and higher dimensions) even with the most powerful
computers. Thus, an artificially broad interface has to be used, i.e., the interface thickness
is usually regarded as a model parameter. Therefore, care must be taken to ensure that the
diffuse interface calculations deliver the proper interface dynamics. Methods have been worked
out to ensure this by adjusting the model parameters and introducing interface currents (i.e.,
a new term in the phase field equations) to compensate for the unphysical effects of a too
thick interface (Karma and Rappel 1996, 1998, Karma 2001). Such techniques allow for a
quantitative modelling of dendrites and eutectic solidification in the framework of the phase
field theory (Karma and Rappel 1998, Bragard et al 2002, Folch and Plapp 2003). Another
important challenge to quantitative phase field modelling is associated with the application of
theory under strong anisotropies of the interface free energy and/or kinetic coefficient and the
related phenomenon of faceting (Kobayashi and Giga 2001, Eggleston et al 2001, Uehara and
Sekerka 2003, Debierre et al 2003).

It is worth noting that although the phase field theory is a phenomenological model, it
can be derived on physical grounds using a density functional approach. Viewing the crystal
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as a highly inhomogeneous liquid, with peaks at the lattice sites, the Fourier amplitudes of
the number density appear as natural order parameters. Their number can be reduced if one
assumes that the density peaks at the atomic sites have a Gaussian form. In this case, all
Fourier amplitudes of the number density can be expressed uniquely in terms of the amplitude
of the dominant density wave, thus a single structural order parameter suffices (Khachaturyan
1996, Shen and Oxtoby 1996). Thus, the phase field can be viewed as the amplitude of the
dominant Fourier component of the singlet density in the crystal. A possible route to obtain
the free energy functional on physical grounds is outlined by Shih et al (1987) on the basis
of a Ginzburg–Landau expansion that considers crystal symmetries. This also offers physical
interpretation for the model parameters, and derivation of the functions introduced intuitively.
Formulation of a single order parameter theory of bcc and fcc nucleation along this line has
been presented recently (Gránásy and Pusztai 2002). Various aspects of linking atomistic
simulations with field theory are addressed by Hoyt and Asta (2002) and Hoyt et al (2003).

With the possible exception of the multi-phase field theory, none of the models mentioned
above are able to describe anisotropic growth of crystal grains with different crystallographic
orientations. Due to the practical importance of polycrystalline materials, extensive efforts
have been made to extend the phase field approach to this case.

2.2. Early models of polycrystalline solidification

Polycrystalline solidification can be addressed at different levels, as is implied by the varying
complexity of the polycrystalline morphologies shown in figure 1.

Foam-like multigrain structures emerge in the presence of competing nucleation and
growth. Such problems are traditionally addressed in the framework of Johnson–Mehl–
Avrami–Kolmogorov (JMAK) theory (for review see Christian 1981). The ‘overlapping’
crystalline fraction is given by the integral

Y (t) = 4π

3

∫ t

0
J (τ )

{
R∗ +

∫ t

τ

v(ϑ) dϑ

}3

dτ, (2)

where J, v, and R∗ are the nucleation rate and growth rate, and the radius of the critical
fluctuation, while the integration variables ϑ and τ have dimensions of time. This expression
coincides with the true crystalline fraction X at the beginning of the process, when the
crystalline particles grow independently. However, soon the regions overlap, and multiply
covered volumes form, and equation (2) overestimates the true crystalline fraction. A simple
mean field correction relating X and Y through the expression dX = (1 − X) dY counts
only that fraction of dY that falls on the untransformed region. This immediately yields
X = 1 − exp{−Y }. This mean field approach is exact if (i) the system is infinite; (ii) the
nucleation rate is spatially homogeneous; and (iii) either a common time dependent growth
rate applies or anisotropically growing convex particles are aligned in parallel (for derivation
with the time cone method, see Cahn 1996, 1997). Then, for constant nucleation and growth
rates in infinite systems, the time evolution follows the JMAK scaling X = 1−exp{−(t/t0)p},
where t0 is a time constant, p = 1 + d is the Kolmogorov exponent, and d is the number of
dimensions, while, for the problem of a fixed number of nuclei, the same expression applies
with p = d . One of the interesting questions is to what degree JMAK scaling applies in
the presence of chemical diffusion. Condition (iii) is obviously violated here, as diffusion-
controlled growth yields a growth rate that depends on particle size. While no exact treatment
is available, it has been suggested (Christian 1981) that under such conditions, p ≈ 1 + d/2
applies for constant nucleation rate and p ≈ d/2 for fixed number of particles. Recent
experimental studies find, however, deviation from this behaviour for diffusion mediated ‘soft
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Figure 3. Various views (left and centre) and a contour line map (right) of the free energy landscape
of the ‘jello-mould’ type model by Morin et al (1995). The central minimum represents the liquid,
while the other minima correspond to different crystallographic orientations. (The phase field is
the radial distance from the centre, and the angle is the orientational variable.)

impingement’ of crystal particles (Pradell et al 1998). It is straightforward to use the phase
field theory to explore such problems.

PFTs with isotropic growth. (In this limiting case one does not need the local
crystallographic orientation to develop the model.) Jou and Lusk (1997) studied the formation
of foam-like multigrain structures in a one-component, isotropic system using a scalar order
parameter theory. They found minor deviations at small times from a constant growth rate,
and also found that the transformed fraction essentially follows the JMAK scaling, except in
the case of large nucleation rates. Elder et al (1994) modelled multigrain solidification in an
isotropic eutectic system using a structural order parameter,a concentration field, and Langevin
noise induced crystal nucleation. The Kolmogorov exponent p = 3 they find is consistent
with the absence of long-range diffusion. (Only short-range diffusion, parallel with the growth
front, plays a role here.) Gránásy et al (2001) studied competing growth of fixed number of
particles in an isotropic binary system. A free energy based phase field theory, equivalent with
the entropy formulation of Warren and Boettinger (1995), has been used. They reported that
the Kolmogorov exponent decreases with increasing transformed fraction, a behaviour that
resembles the trends seen in experiment (Pradell et al 1998).

PFTs with anisotropic growth. In order to handle nucleation and growth of more than
one anisotropically growing particle (see figure 1(b)), crystallographic orientations need to be
included in the theory.

The first phase field model that allowed for different crystallographic orientations in a
solidifying system is due to Morin et al (1995). In this treatment, the free energy density has
n wells, corresponding to n crystallographic orientation that breaks the rotational symmetry
of the free energy (figure 3). Seeds of fixed critical size were randomly introduced in space
and time to mimic homogeneous nucleation. The model has been applied for polymorphous
crystallization, where the composition of the liquid is close to that of the crystal. Accordingly,
chemical diffusion plays a minor role and the JMAK form fits to the simulations with a
Kolmogorov exponent corresponding to homogeneous nucleation. A drawback of the model
is that the rotational symmetry of the free energy had to be sacrificed to obtain a finite number
of crystallographic orientations, with a diffuse interface between grains.

The multi-phase field models (Steinbach et al 1996, Fan and Chen 1996, Krill and Chen
2002) are extremely flexible approaches that can be used to describe nucleation and growth of
particles with random crystallographic orientation. To our knowledge, these models have not
been applied for such problems. They have, however, been successfully used to describe the
time evolution of multigrain structures (grain boundary dynamics). Difficulties arise, however,
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due to the large number of phase fields if one intends to use Langevin noise to initiate nucleation.
Although this can certainly be substituted by inserting the nuclei by ‘hand’, this becomes rather
tedious when structures that require the nucleation of different crystallographic orientations at
the growth front (figures 1(c)–(j)) are to be addressed. This model also effectively breaks the
rotational symmetry of the free energy, for a given number of phase fields.

Below we describe further advances in the theory of polycrystals, particularly in the
directions of restoring the rotational invariance of the free energy and incorporating a natural
(noise driven) nucleation of new crystal orientations.

2.3. Orientation field and the associated free energy

The first model of polycrystalline solidification that both incorporates crystallographic
orientation and has a rotationally invariant free energy is due to Kobayashi et al (1998). Since
this is the basis for further developments, it is discussed here in detail.

To handle crystallographic orientation in two dimensions, a non-conserved orientation
field θ(r, t) is introduced whose local value specifies the orientation angle that, in turn, sets
the tilt of the crystal planes in the laboratory frame. Accordingly, the angular dependence
of the interfacial free energy and/or the kinetic coefficient needed for addressing anisotropic
growth is measured relative to this orientation. The orientational free energy Fori is now derived
using a heuristic approach. Following the philosophy of the phase field method, we require
that the free energy is a local functional, i.e., it may depend on only the field variables and
their derivatives, while non-local interactions that would yield integro-differential equation of
motion are not considered. Since we wish to retain the invariance of free energy to rotation,
we have to exclude an explicit dependence on θ and its powers. We seek the orientational free
energies in the form Fori = ∫

dr H |∇θ |n, where H and n are not yet specified. Considering
a planar interface between two semi-infinite crystal grains (a bicrystal) of misorientation �θ ,
one finds that

Fori =
∫ L

0
dx H |∇θ |n ∝ (�θ)n

Ln−1
, (3)

where spatial integration is taken along the spatial coordinate x perpendicular to the interface,
while the thickness of the interface region is L. Thus, for n > 1, the orientation free energy
diminishes with increasing interface thickness, i.e., the system tends to lower its free energy
by broadening the interface indefinitely. It should be noted that n = 2 is actually a fine model
for a grain boundary, with the caveat that real grain boundaries are properly described as a
wall of dislocations. Dislocations are singularities in the ∇θ field, and we do not wish to
model each dislocation in our system, only coherent lines of dislocations (grain boundaries).
Thus, the most plausible choice that leads to a stable interface with non-zero free energy is
n = 1. In this case, the orientational free energy of the interface is proportional to �θ (see
figure 4(a)), provided that θ(x) is monotonic (if θ(x) is non-monotonic, the energy is not a
minimum). This leaves, however, the interface profile θ(x) still arbitrary. This arbitrariness can
be remedied if we assume that the coefficient H has a minimum at the position of the interface
(see figure 4(b)). Then, the minimization of free energy will lead to a stepwise variation
of θ(x), a behaviour approximating reasonably the experimental reality of stable, flat grain
boundaries. Such a minimum can be realized either making the coefficient H dependent on the
solid–liquid structural order parameter, or on an extra field that determines whether the solid
material is crystalline or disordered (Kobayashi et al 1998). However, due to the non-analytic
nature of this orientational free energy density, the equation of motion specifies a singular
diffusivity problem, and requires special care when handled numerically (Kobayashi and Giga
1999). Various modifications of this approach have been applied to describe competing growth
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Figure 4. (a)
∫

dx |∇θ | = |�θ | is the same for the three θ(x) functions (single-step, multi-step,
curved), since they vary monotonically between the same end points. (b) If the coefficient of |∇θ |
has a minimum in the interface—after free energy minimization—the orientation field changes
stepwise between the two orientations.

of anisotropic particles, including dendritic solidification in undercooled single-component
(Kobayashi et al 1998) and binary liquids (Warren et al2003b). Applications to grain boundary
problems including grain boundary wetting and grain coarsening in polycrystalline matter via
grain boundary migration and rotation are reviewed in section 2.7 (Warren et al 2003a). The
model used for the latter studies will be called model A, and is described in the appendix.
Note that the models termed models A to C in this paper differ from models A to C of the
usual Hohenberg and Halperin (1977) classification of classical field theories.

The modelling of nucleation of grains at the solidification front requires a further important
ingredient. This ingredient was introduced by Gránásy et al (2002a, 2002b), who extended
the orientation field θ into the liquid phase, where it fluctuates in time and space. Assigning
local crystal orientation to liquid regions, even a fluctuating one, may seem artificial at first
sight. However, due to geometrical and/or chemical constraints a short-range order exists even
in simple liquids, which is often similar to the one in the solid. Rotating the crystalline first-
neighbour shell so that it aligns optimally with the local liquid structure, one may assign a local
orientation to every atom in the liquid. The orientation obtained in this manner fluctuates in time
and space. The correlation of the atomic positions/angles shows how good this fit is. (In the
model, the fluctuating orientation field and the phase field play these roles.) Approaching the
solid from the liquid, the orientation becomes more definite (the amplitude of the orientational
fluctuations decreases) and matches to that of the solid, while the correlation between the local
liquid structure and the crystal structure improves. In this model, called model B henceforth
(for details see the appendix), the orientation field and the phase field are strongly coupled to
recover this behaviour.

In model B, the free energy density was assumed to have the form fori = H T [1 −
p(φ)]|∇θ |, where p(φ) is the phase interpolation function (see the appendix) that varies
between zero and unity, while φ changes from zero to unity corresponding to the bulk solid and
liquid states, respectively. The free energy of the small angle grain boundaries scales with H T .
Note that due to the [1− p(φ)] multiplier, the driving force of orientational ordering disappears
in the liquid. This is needed to avoid double counting of the orientational contribution in the
liquid, which is per definitionem taken into account in the free energy difference between the
bulk liquid and solid phases. Since we are primarily interested in polycrystalline solidification
that takes place on a far shorter timescale than grain boundary relaxation, the orientational
mobility is assumed to vary proportionally to p(φ) across the interface (set zero in solid and
maximum in liquid). Accordingly, orientational ordering takes place exclusively at the crystal–
liquid interface, concurrently with structural ordering. An important consequence is that, in
general, there is a contribution to the free energy of the solid–liquid interface emerging from the
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orientational noise in the interface region. With appropriate choice of the model parameters,
however, an orientationally ordered liquid layer develops ahead of the solidification front (as
observed in molecular dynamics simulations, see e.g. Laird and Haymet 1992, Davidchack
and Laird 1998), rendering this contribution insignificant. Then the usual simple relationships
between interfacial properties (thickness and free energy) and the model parameters can be
retained.

The introduction of the orientational field and the respective mobility are accompanied
with the appearance of additional time and length scales. The relaxation time of orientational
perturbations is inversely proportional to the orientational mobility Mθ , which in turn is
proportional to the rotational diffusion coefficient Mθ ∝ Drot of molecules. It appears that
this new timescale plays an essential role in the formation of many polycrystalline structures.
Recently, it has become appreciated that undercooled liquids of sufficiently high viscosity
(≈30–50 Pa s) exhibit spontaneous and long-lived heterogeneities, associated with the
formation of regions within the fluid having much higher and lower mobility relative to a simple
fluid in which particles exhibit Brownian motion (Donati et al 1998, Bennemann et al 1999).
These dynamic heterogeneities persist on timescales of the order of the stress relaxation time,
which can be minutes near the glass transition and astronomical times at lower temperatures.
The presence of such transient heterogeneities has been associated with dramatic changes
in the transport properties of supercooled liquids (Rössler 1990, Chang and Sillescu 1997,
Masuhr et al 1999, Ngai et al 2000, Swallen et al 2003). Specifically, both the translational
diffusion coefficient Dtr and the rotational diffusion coefficient Drot (quantities associated
with the rate of molecular translation and rotation in the liquid) scale with the inverse of liquid
shear viscosity (Stokes–Einstein and Stokes–Einstein–Debye relation-ships) at high T and low
undercooling, but Drot slows down significantly relative to Dtr at lower T . This phenomenon
in cooled liquids is termed ‘decoupling’ (Rössler 1990, Chang and Sillescu 1997, Masuhr et al
1999, Ngai et al 2000, Swallen et al 2003). As a result, at low temperatures, where rotational
relaxation is slow relative to the translational one that governs the growth rate, orientational
defects (e.g. new grains) can be frozen into the solid. Model B naturally incorporates this
possibility (the orientational mobility needs to be reduced relative to the phase field mobility).
As will be demonstrated in section 2.6, model B is able to recover many of the polycrystalline
morphologies via this mechanism. Before this, however, we explore the applicability of the
phase field formalism to nanometre size fluctuations that govern crystal nucleation.

2.4. Homogeneous crystal nucleation

The crystallization of a homogeneous undercooled liquid starts with the formation of
heterophase fluctuations whose central part evinces crystal-like atomic arrangement. Those
fluctuations that exceed a critical size, determined by the interplay of the interfacial and
volumetric contributions to the cluster free energy,have a good chance of reaching macroscopic
dimensions, while the smaller clusters decay with a high probability. Critical size heterophase
fluctuations are termed nuclei and the process in which they form via internal fluctuations
of the liquid is homogeneous nucleation (as opposed to the heterogeneous nucleation, where
particles, foreign surfaces, or impurities help to produce the heterophase fluctuations that
drive the system towards solidification). The description of the near-critical fluctuations is
problematic even in one-component systems. The main difficulty is that critical fluctuations
forming on reasonable experimental timescales contain typically a few times ten to several
hundred molecules (Báez and Clancy 1995, ten Wolde et al 1995, 1996, Auer and Frenkel
2001a, 2001b). This together with the fact that the crystal–liquid interface extends to several
molecular layers (Laird and Haymet 1992, Davidchack and Laird 1998) indicates that the
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critical fluctuations are essentially comprised of interface. Therefore, the droplet model of
classical nucleation theory, which employs a sharp interface separating a liquid from a crystal
with bulk properties, is certainly inappropriate for such fluctuations as demonstrated by recent
atomistic simulations (Auer and Frenkel 2001a, 2001b). Field theoretic models that predict a
diffuse interface offer a natural way to handle such difficulties (Oxtoby 2002). Here, we review
recent applications of the phase field theory for describing homogeneous crystal nucleation,
and address two possibilities.

(a) The phase-field theory can be used to simulate the nucleation process. The proper
statistical mechanical treatment of the nucleation process requires the introduction of
uncorrelated Langevin-noise terms into the governing equations with amplitudes that
are determined by the fluctuation–dissipation theorem (Elder et al 1994, Drolet et al
2000, Pavlik and Sekerka 1999, 2000). Such an approach has been used for describing
homogeneous nucleation in a single-component system (Castro 2003) and during eutectic
solidification in a binary model (Elder et al 1994, Drolet et al 2000). However, modelling
of nucleation via Langevin noise is often prohibitively time consuming. One remedy is
simply to increase the amplitude of the noise. This, however, raises the possibility that
the fluctuations, which initiate solidification, will most likely significantly differ from the
real critical fluctuations. To avoid practical difficulties associated with modelling noise-
induced nucleation, crystallization in simulations is often initiated by randomly placing
supercritical particles into the simulation window (e.g. Simmons et al 2000, Lo et al 2001,
2003). An alternative method has been proposed by Gránásy et al (2002a, 2002b), who
first calculate the properties of the critical fluctuations (see below) and then place such
critical fluctuations randomly into the simulation window, while also adding Langevin
noise that decides whether these nuclei grow or dissolve.

(b) Besides simulating the nucleation process, the phase field theory can be used to calculate
the height of the nucleation barrier (Roy et al 1998, Gránásy et al 2002a, 2002b, 2003b).
Being in unstable equilibrium, the critical fluctuation (the nucleus) can be found as an
extremum of the free energy functional, subject to conservation constraints when the
phase field is coupled to conserved fields. To mathematically impose such constraints
one adds the volume integral over the conserved field times a Lagrange multiplier to the
free energy. The field distributions, that extremize the free energy, obey the appropriate
Euler–Lagrange equations, which in the case of local functionals, used in the phase field
theory, take the form

δF

δχ
= ∂ω

∂χ
− ∇ ∂ω

∂∇χ
= 0, (4)

where δF/δχ stands for the first functional derivative of the free energy with respect to
the field χ , while ω is the total free energy density (incorporating the gradient terms).
Here χ stands for all the fields used in theory. The Euler–Lagrange equations are solved
assuming that unperturbed liquid exists in the far field, while, for symmetry reasons, zero
field gradients exist at the centre of the fluctuations. The same solutions can also be
obtained as the non-trivial time-independent solution of the governing equations for field
evolution. Having determined the solutions, the work of formation of the nucleus (height
of the nucleation barrier) can be obtained by inserting the solution into the free energy
functional.

While in large-scale simulations one is often compelled to use an unphysically broad
interface, in the case of nucleation, where the interface thickness and the size of nuclei are
comparable, one can work with the physical interface thickness. In a few cases, all parameters
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Figure 5. Snapshots of the concentration (left) and orientation (right) fields for two-dimensional
dendritic solidification of a binary alloy (Ni–Cu) as predicted by model B at 1574 K and
supersaturation 0.78. By the end of solidification ∼700 dendritic particles formed. The calculation
has been performed on a 7000 × 7000 grid (92.1 µm × 92.1 µm) with a 5% anisotropy of the
interfacial free energy that was assumed to have a fourfold symmetry. (Colouring: on the left, yellow
and blue correspond to the solidus and liquidus compositions, respectively, while the intermediate
compositions are shows by colours that interpolate linearly between these colours. On the right,
colours denote crystallographic orientations: When the fast growth direction is upward, 30◦ , or
60◦ left, the grains are coloured blue, yellow, or red, respectively, while the intermediate angles
are denoted by a continuous transition among these colours. Owing to the fourfold symmetry,
orientations that differ by 90◦ multiples are equivalent.)

of the phase field theory can be fixed, and the calculations can be performed without adjustable
parameters. For example, in the one-component limit of the standard binary phase field theory
(Warren and Boettinger 1995), the free energy functional contains only two parameters, the
coefficient of the square-gradient term for phase field and the free energy scale (height of the
central hill between the double well in the local free energy density). If the thickness and the free
energy of a crystal–liquid interface are known for the equilibrium crystal–liquid interface, all
model parameters can be fixed and the properties of the critical fluctuation, including the height
of the nucleation barrier, can be predicted without adjustable parameters. Such information is
available from atomistic simulations/experiments for a few cases (Lennard-Jones system and
ice–water system). This procedure leads to a good quantitative agreement with the magnitude
of the nucleation barriers deduced from atomistic simulations for the Lennard-Jones system,
and from experiments on ice nucleation in undercooled water (Gránásy et al 2002a). A similar
approach for a binary Ni–Cu alloy led to reasonable values for the temperature and composition
dependence of the interface free energy of critical fluctuations, and also yielded reasonable
critical undercoolings for electromagnetically levitated droplets (Gránásy et al 2002a). Similar
results have been obtained for the hard-sphere system using a phase field model that relies on
a structural order parameter coupled to the density field (Gránásy et al 2003b).

These findings suggest that, using the physical interface thickness, the phase field theory
is able to predict the height of the nucleation barrier quantitatively.

2.5. Competing nucleation and growth

The kinetics of anisotropic solidification in a binary system has been studied in two
dimensions by Gránásy et al (2002a, 2002b, 2003a) using model B. A typical polycrystalline
dendritic morphology closely resembling figure 1(b) is shown in figure 5. The large number
of particles (∼700) provides reasonable statistics to evaluate the Kolmogorov exponent
p. Four representative simulations performed on a 7000 × 7000 grid are compared
(Gránásy et al 2003a): two simulations were performed for a reduced concentration of



Topical Review R1217

0.2 0.8
0

2

4

6

(e)

x=0.2

η 0.2       0.8
0

2

4

6

p
(f)

x=0.2

η 0.2       0.8
0

1

2

3

p

(g)

x=0.5

η 0.2       0.8
0

1

2

3

p

(h)

x=0.8

η

Figure 6. Two-dimensional anisotropic multigrain solidification as a function of composition
and nucleation rate in the Cu–Ni system at 1574 K as predicted by model B. (a)–(d) 1000 × 1000
segments (13.2 µm×13.2 µm) of the concentration distribution (yellow—solidus; blue—liquidus)
and (e)–(h) the respective Kolmogorov exponent versus normalized transformed fraction curves are
shown. Simulations presented in panels (a) and (b) differ in the magnitude of the nucleation rate.

x = (c∞ − cs)/(cl − cs) = 0.2 between the solidus and liquidus (c∞ is the composition of the
initial liquid, cs = 0.399 112 and cl = 0.466 219 are the solidus and liquidus compositions at
T = 1574 K), while the others at 0.5 and 0.8. 1000×1000 sections of the respective simulations
are shown in figure 6 (panels (a)–(d)), together with the respective Komogorov exponents
evaluated as a function of the normalized crystalline fraction η = X/Xmax, (panels (e)–(h)),
where Xmax is the maximum crystalline fraction achieved at the given liquid composition.

If the nucleation rate is low enough there is space to develop a full dendritic morphology
(figure 6(a)). Note that in the case of dendritic solidification, the global average of the
composition of the growing solid combined with the interdendritic liquid trapped between
the dendrite arms must be equal to the initial composition of the liquid, thus solute pile up does
not decelerate the advance of the perimeter (except as a transient). Since the dendrite tip is a
steady state solution of the diffusion equation, constant nucleation and growth rates apply, and
thus p = 1+d = 3 is expected in two dimensions. Indeed, the observed Kolmogorov exponent
is p ≈ 3. In the other simulations, the particles have a more compact shape, and interact via
their diffusion fields, a phenomenon termed ‘soft impingement’. The respective Kolmogorov
exponents decrease with increasing solid fraction. A closer inspection of the process indicates
that at large supersaturations where there is no substantial difference in the composition of
the nucleus and the initial liquid (see figures 6(b) and (f)), growth in the initial stage right
after nucleation, is interface controlled (governed by the phase field mobility), as opposed
to control by chemical diffusion. This results in a delay in the onset of diffusion-controlled
growth, resulting in a value for p that decreases with time; a phenomenon that becomes weaker
with decreasing supersaturation. This effect will only be perceptible in the case of copious
nucleation, where the length of this transient period is comparable to the total solidification
time. Indeed, such behaviour has been observed during the formation of nanocrystalline
materials made by the devitrification of metallic glass ribbons (Pradell et al 1998).

2.6. Polycrystalline growth morphologies

Particulate additives can be used to initiate nucleation and they find application as grain refiners
for many practical systems. Recent experiments on clay filled polymer blend films revealed
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that, besides this role, they may also perturb crystal growth, yielding polycrystalline growth
morphologies (Ferreiro et al 2002). Polycrystalline growth also occurs in pure liquids in the
absence of particulate additives (e.g. Keith and Padden 1963, Ryshchenkow and Faivre 1988,
Magill 2001). Both routes to polycrystalline growth have recently been addressed within the
framework of the phase field theory.

2.6.1. Effect of foreign particles. A spectacular class of structures appears in thin polymer
blend films, if foreign (clay) particles are introduced. This disordered dendritic structure is
termed a ‘dizzy’ dendrite (figure 1(c)). These structures are formed by the engulfment of the
clay particles into the crystal, inducing the formation of new grains. This phenomenon is
driven by the impetus to reduce the crystallographic misfit along the perimeter of clay particles
by creating grain boundaries within the polymer crystal. This process changes the crystal
orientation at the dendrite tip, changing thus the tip trajectory (‘tip deflection’). To describe
this phenomenon, Gránásy et al (2003c) incorporated a simple model of foreign crystalline
particles into model B: they are represented by orientation pinning centres—small areas of
random, but fixed orientation—which are assumed to be of a foreign material, and not the
solid φ = 0 phase. This picture economically describes morphological changes deriving from
particle–dendrite interactions.

The simulations (see figure 7) show that tip deflection occurs only when the pinning centre
is above a critical size, comparable to the dendrite tip radius. Larger pinning centres cause
larger deflections. With increasing orientational misfit between the particle and the dendrite,
dendrite tip deflection was found to increase. However, above a critical angular difference
between the pinning centre and the dendrite (�θ ≈ 0.35), the pinning centre is simply engulfed
into the dendrite without deflection, while the tip splits to some extent. This is due to the high
interface energy at these misorientations, creating an energetic preference for a small layer
of liquid around the inclusion. In this case the wet phase boundary appears as a hole in the
crystal. An important consequence of this effect is that the angle of tip deflection has an upper
limit, thus preventing large deviations from the original growth direction. Pinning centres
cause deflection only if directly hit by the dendrite tip, a finding confirmed by experiment.
This explains the experimental observation that only a small fraction of the pinning centres
influence morphology. Using an appropriate density of pinning centres comparable to the
density of clay particles, a striking similarity is obtained between experiment and simulation
(figure 8). This extends to such details as curling of the main arms and the appearance of extra
arms. The disorder in dendrite morphology originates from a polycrystalline structure that
develops during a sequential deflection of dendrite tips on foreign particles. With increasing
number density of the particles, polycrystals of increasing ‘randomness’ replace the single-
crystal dendrite form, leading to a continuous transition into the seaweed morphology (figure 9).

2.6.2. Polycrystalline growth in pure systems and the duality of static and dynamic
heterogeneities. The mechanism described above is certainly not a general explanation
for polycrystalline growth since spherulites have been observed to grow in liquids without
particulates or detectable molecular impurities. How can this be understood? A clue to this
phenomenon can be found in the observations of Magill (2001), who noted that spherulites only
seem to appear in highly undercooled pure fluids of sufficiently large viscosity. Interpreting
Magill’s observations, we hypothesize that the decoupling of the translational and rotational
diffusion coefficient is responsible for the propensity for polycrystalline growth in highly
undercooled liquids. Specifically, a reduced Drot should make it difficult for newly forming
crystal regions to reorient with the parent crystal to lower its free energy at the growth front that
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Figure 7. Various influences on the deflection of a dendrite tip by an orientation pinning centre
in model B. The first row shows the influence of the size of the pinning centre: larger pinning
centres cause larger deflections (the misorientation �θ is set to 0.333 below and 0.5 above). In
the middle row the effect of increasing misorientation �θ of (13 pixel-sized) pinning centres is
shown. As the angle increases beyond 0.3 (or less than 0.7 by symmetry) the effective surface
energy increases to the point where the boundary prefers to be ‘wet’, which results in tip splitting
as opposed to deflection. The third row shows that unless the tip is precisely lined up with the
(13-pixel) pinning centre, the tip does not deflect, even though the misorientation is �θ = 0.3. �x
is the lateral disposition. (Colouring is the same as for the right panel of figure 5.) The simulations
were performed on a 300×300 rectangular grid (4 µm×4 µm), with the thermodynamic properties
of Ni–Cu, and 15% anisotropy of the interface free energy. θ is normalized to vary between zero
and unity.

is advancing with a velocity scaling with the translational diffusion coefficient. Thus epitaxy
cannot keep pace with solidification, i.e., the orientational order that freezes in is incomplete.
This situation can be captured within the phase field theory by reducing the orientational
mobility while keeping the phase field mobility constant as discussed in detail by Gránásy et al
(2004).

The first step in this direction has been made by Gránásy et al (2003a), who reported the
formation of polycrystalline spherulite in model B, when reducing the orientational mobility
at large driving force. We recently performed a more systematic study (Gránásy et al 2004),
which revealed that, as expected, reducing the orientational mobility induces the formation of
polycrystalline patterns. Notably, we found similar morphologies and grain structures to those
initiated by particulate additives (cf figures 9 and 10). These results indicate a duality between
the morphologies evolving due to the effects of static heterogeneities (foreign particles) and
dynamic heterogeneities (quenched-in orientational defects).

It is worth noting in this respect that a dendrite to polycrystalline seaweed transition
has been observed in electrodeposition (Grier et al 1986), and that polycrystalline seaweed
structures are commonly observed in electrochemical processes (Fleury 1997) or during the
crystallization of electrodeposited layers (Ben-Jacob et al1986, Lereah et al 1994). Despite the
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Figure 8. ‘Dizzy’ dendrites formed by sequential deflection of dendrite tips on foreign particles:
comparison of experiments on 80 nm clay–polymer blend film (brown panels, courtesy of V Ferreiro
and J F Douglas; for the experimental details see Ferreiro et al (2002)) and phase field simulations
by model B (yellow panels). The simulations have been selected from 30 simulations according to
their resemblance to the experimental patterns. These simulations were performed under identical
conditions, except that different initializations of the random number generator have been chosen.
(The simulations were performed on a 3000 × 3000 grid (39.4 µm × 39.4 µm), with 18 000
single-pixel orientation pinning centres per frame.)

success of modelling fractal-like morphologies on the basis of diffusion-limited aggregation
(Vicsek 1989, Halsey 2000), details of the polycrystalline seaweed formation are poorly
understood. Quenching of orientational defects into the crystal due to reduced rotational
diffusivity under coupling with diffusion controlled fingering (as happens in our phase field
model) offers a straightforward explanation for both the morphology and the polycrystalline
nature.

2.6.3. From needle crystals to spherulites. One of the popular ideas used to explain the
formation of spherulites envisions a regular branching of crystalline filaments with well defined
branching angle (see e.g. Keller and Waring 1955, Ryshchenkow and Faivre 1988, Magill
2001). While the details of such a mechanism necessarily differ on the molecular scale for the
many systems that display spherulitic solidification, we hope to capture the general features
of this process. To incorporate branching with a fixed orientational misfit, we included a new
form of the orientational free energy (see model C in the appendix). Here the orientational
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Figure 9. The effect of particulate additives on the growth morphology as predicted by model B.
Note the transition from single-crystal dendrite to polycrystalline ‘seaweed’ structure. Upper row,
concentration maps (yellow—solidus, black—liquidus); lower row, orientation maps (colouring
is the adaptation of the scheme used in figure 7 for sixfold symmetry). From left to right the
numbers of single-pixel orientation pinning centres are N = 0, 10 000, 20 000, 50 000, and
100 000, respectively. The interface free energy has a sixfold symmetry and a 2.5% anisotropy.
The computations were performed on a 1000 × 1000 grid (13.2 µm × 13.2 µm).

Figure 10. The effect of reduced orientational mobility on the growth morphology. Note the
similarity to morphologies shown in figure 9. From left to right the orientational mobility is
multiplied by the factors 1, 0.089, 0.08, 0.067, and 0.05, respectively. Other conditions are identical
to those for figure 2. (Colouring is the same as for figure 9.)

free energy has a second (local) minimum as a function of misorientation angle ξ0|∇θ |, where
ξ0 is the correlation length of the orientation field. Thus, during orientational ordering at the
solid–liquid interface, a second low-free-energy choice (preferred misorientation) is offered.
Accordingly, the cells that have a larger misorientation than the first (local) maximum of the
fori versus ξ0|∇θ | relationship may relax towards the local minimum, unless the orientational
noise prevents settling into this local minimum.

The morphologies formed with random 30◦ branching are shown as a function of
supersaturation in figure 11. A large kinetic anisotropy (δ0 = 0.995) of twofold symmetry
is assumed, as this is expected in polymeric systems that have the propensity to form crystal
filaments. Otherwise, properties of the familiar Ni–Cu system are used, as many of this
system’s model parameters are known, and the phase diagram is particularly simple. Ideally,
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Figure 11. Polycrystalline morphologies formed by random branching with a misfit of 30◦ in model
C. The kinetic coefficient has a twofold symmetry and a large, 99.5%, anisotropy, expected for
polymeric substances. Simulations were performed on a 500×500 grid (6.6 µm×6.6 µm). Upper
row: composition map (yellow—solidus, dark blue—liquidus). Central row: grain boundary map
(grey scale in solid (crystal) shows the local free energy density H T |∇θ |). Lower row: orientation
map. (The colouring of the orientation map is an adaptation of the scheme shown in previous
figures for twofold symmetry: when the fast growth direction is upwards, 60◦ , or 120◦ left, the
grains are coloured red, blue, or yellow, respectively, while the intermediate angles are denoted
by a continuous transition among these colours. Owing to twofold symmetry, orientations that
differ by 180◦ multiples are equivalent.) Unless noise intervenes, six different orientations are
allowed, including the orientation of the initial nucleus, which is common for all simulations (30◦
off horizontal direction (yellow)). In the present colour code, yellow, grey, blue, purple, red, and
orange stand for them. In order to make the arms better discernible, in the orientation map, the
liquid (which has random orientation, pixel by pixel) has been coloured black. The supersaturation
varies from left to right as S = 1.1, 1.0, 0.95, 0.90, and 0.75. Note the chain of transitions that links
the needle crystal forming at low supersaturation to ‘axialites’, crystal ‘sheaves’, and eventually to
the spherulites (with and without ‘eyes’—uncrystallized holes—on the two sides of the nucleus).

in a system where filament branching happens with a 30◦ misfit, the polycrystalline growth
form may consist of only grains that have six well defined orientations (including the one
that nucleated), which differ by multiples of 30◦. Indeed this is observed, with some noise
driven faults at high driving forces. At low supersaturations, needle crystals form. With
increasing driving force, the branching frequency increases, and more space filling patterns
emerge, while the average grain size decreases. This leads to a continuous morphological
transition that links the needle crystals forming at low supersaturation to axialites, to crystal
sheaves, and eventually to spherulites (with and without ‘eyes’ on the two sides of the nucleus)
that form far from equilibrium.

A sequence of snapshots shows the birth of a spherulite (figure 12). First crystal ‘sheaves’
of diverging ends form, that spread with time more and more, forming finally a spherulite with
two ‘eyes’—uncrystallized holes—on the sides of the nucleus, a pattern common in polymeric
systems (see e.g. Magill 2001).

Other prominent polycrystalline growth forms are presented in figure 13. Rare branching
with low misfit (e.g., 15◦) and low driving force leads to the formation of arboresque structures
(see the ‘willow tree’-like pattern in figure 13). A pattern resembling ‘quadrites’ has been
obtained with dense perpendicular branching. If the metastable free energy well is deep, and
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Figure 12. The birth of a spherulite at S = 1.0, as predicted by model C. Time increases from left
to right. Upper row, composition map; lower row, orientation map.

Figure 13. Polycrystalline growth morphologies as predicted by model C: arboresque spherulite
obtained with a branching angle of 15◦, on a 2000×2000 grid (26.3 µm×26.3 µm) (cf figure 1(f));
‘quadrite’-like growth form obtained with a branching angle of 90◦ , on a 2000 × 2000 grid
(26.3 µm × 26.3 µm) (cf figure 1(h)); and fractal-like aggregates obtained with a branching
angle of 60◦ , on a 500 × 500 grid (6.6 µm × 6.6 µm) (cf figure 1(i)).

the driving force is not too large, copious nucleation of new grains occurs at the interface,
leading to essentially isotropic fingering, yielding polycrystalline fractal-like structures.

Work is underway to map the zoo of possible polycrystalline morphologies. While the
similarity of the simulations and the experimental patterns is reassuring, further experimental
work is also needed to determine whether the predicted grain structures are indeed realistic.

2.6.4. Eutectic spherulites with locked orientational misfit. In some of the eutectic systems,
the two solid phases are expected to have a well defined orientational relationship. Pusztai and
Gránásy modified model B to address such a situation: regular solution thermodynamics has
been built in, and a free energy term has been added that prefers a fixed misorientation at the
phase boundaries (see Lewis et al 2004). Since the model contains a single structural order
parameter (phase field), it is strictly applicable only to systems where the two phases have the
same crystal structure (e.g., Ag–Cu, Ag–Pt). Simulations have been performed for the Ag–Cu
system at three compositions (hypo-eutectic, eutectic, and hyper-eutectic), which showed that
the model successfully accounts for orientational locking of the solid phases (figure 14).
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Figure 14. Equiaxed solidification in hypo-eutectic (cCu = 0.3), eutectic (cCu = 0.35), and hyper-
eutectic (cCu = 0.4) Ag–Cu liquids at 900 K as predicted by the phase field theory. Composition
maps are shown in the top row; the respective orientation maps are in the bottom row. (Colouring:
in the composition maps, continuous change from blue to yellow indicates compositions varying
from cCu = 0 to 1, respectively. In the orientation maps, different colours stand for different
crystallographic orientations in the laboratory frame.) Note the locked (fixed) misorientation of
the two phases within the eutectic particles.

2.7. Grain boundaries

Phase field modelling of grain boundaries themselves is a natural subset of the above treatment,
with only a few modifications to the controlling equations of motion. All of the processes
addressed in this paper, so far, address the formation, of a polycrystalline material, and thus
yield systems with intricate grain networks. However, none of these treatments examines the
subsequent evolution of the grain structure in the largely solid final state. This is, of course,
quite reasonable, as the timescales associated with grain boundary dynamics are typically far
slower than the speeds associated with any of the solidification phenomena addressed herein.
Thus, all processes in the solid are approximately ‘frozen in’ within the confines of our model.

However, using the equations developed in the appendix treatment of model A, we are able
to describe the formation of a foam-like multi-grain structure by impingement of solidifying
grains and the subsequent evolution of this grain network. These types of simulations have
been done before using models described in section 2.2, but the present approach has all of
the advantages detailed in the other sections, while still being able to describe foam-like grain
structures. As is detailed in the appendix, within model A, grain boundaries can be made
mobile if a higher-order term, |∇θ |2, is present in the free energy. This term renders the
‘jump’ in θ continuous in its derivative (|∇θ | remains finite). This, in turn, numerically unpins
the boundary. Additionally, the presence of dynamics in θ implies the possibility of grain
rotation, admitting another means by which the grain network can lower its free energy.

As a consequence of this mobility, the grain boundaries are now able to readjust their
configuration after impingement to find a lower-energy state. Often this state is characterized
by grain boundary wetting, a phenomenon commonly observed in materials systems. There
have been substantial experimental and theoretical studies of the grain wetting phenomenon
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(Glicksman and Vold 1969, Blendell et al 1999, Chatain et al 2001). We should note that
characterization of wetting away from the melting point is more ambiguous because the
liquid/solid interface can only be stabilized by curvature (through the Gibbs–Thomson effect);
however, the numerical simulations shown below exhibit behaviour that is consistent with
rudimentary expectations. In general, a system with variable composition will have a variable
melting point and this is expected to elucidate additional aspects of wetting phenomena (Rappaz
et al 2003). However, while one can consider the binary alloy case, it is instructive in this
instance to examine the theory in the case of pure (single-component) material. The approach
detailed here closely follows the arguments made by Warren et al (2003a).

2.7.1. Grain boundary wetting. Because the model contains both a cost for the presence of a
grain boundary and the ability to model a liquid–solid interface, a transition from the classical
limit of a ‘dry’ grain boundary to a wet boundary is possible. A simple energetic argument
suggests that if the grain boundary energy should rise to more than twice the liquid–solid
surface energy, then the system would prefer to contain two liquid–solid interfaces, and the
boundary will wet. We examine our model in the case where T = Tm, the melting temperature
of the material, and examine the case where the coefficient of the |∇θ |2 term εθ = 0, as we do
not need grain boundary mobility for this mathematical argument (although we will reintroduce
it for the simulations). The value of the phase field at a bi-crystal interface between two grains
differing by a misorientation of �θ is termed φmax and has a value

φmax = H�θ

aεφ

= �θ

�θ∗
c

where �θ∗
c ≡ aεφ/H , and a is related to the height of the free energy barrier between the

solid and liquid states in equilibrium. For convenience, let us define the value φ∗ ≡ 1 − φmax.
If �θ > �θ∗

c , there is no stationary solution to the bi-crystal problem (at the melting point),
and the boundary will melt above this angle. The width of the boundary d is found to be

d = −2εφ

a
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a
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)
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which diverges logarithmically as�θ → �θ∗
c from below. Another perspective on the meaning

of the critical angle �θ∗
c can be obtained by computing, when T = Tm, the bi-crystal boundary

energy

γbc = s�θφ2
∗ − aεφφ

2
∗

(
1 − 2φ∗

3

)
+

aεφ

3
= aεφ

3

(
1 − φ3

∗
)
.

We carefully have not asserted that γbc is the grain boundary energy γgb. In actuality, γbc is
the excess energy due to the misorientation of two grains of crystal, which encompasses three
classical quantities: liquid–solid surface energy, grain boundary energy, and the energy of
any undercooled intervening liquid phase. We wish to compare this energy with the liquid–
solid surface energy. The mathematics for the liquid–solid interface solution to this phase
field model is nearly identical to the bi-crystal case. For the liquid–solid case �θ = 0, and
thus there is no step-function in the θ profile. The surface energy of the isolated liquid–solid
interface in this model is

γls = εφ

∫ 1

0
dφ

√
2 f = aεφ

6
.

The bi-crystal energy can therefore be re-expressed as

γbc = 2γls(1 − φ3
min) � 2γls.
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Figure 15. Co-existing (metastable) crystallite pairs, as a function of misorientation relative to the
critical misorientation. Note the formation of a wet grain boundary as �θ → �θc. The black lines
are the phase field contours from 0.1 to 0.9 in steps of 0.2, while the colours represent orientation
(rainbow colour map).

Thus, at the melting temperature, the boundary energy rises to 2γls as �θ increases to �θ∗
c . At

�θ = �θ∗
c , the boundary melts (infinite width). This is referred to as grain boundary wetting

or grain boundary melting, and the critical angle is defined by γbc(�θ∗
c ) = 2γls. Note also

that if �θ∗
c is greater than the largest possible misorientation then the boundary will never

melt, and all boundaries will be dry in equilibrium at the melting temperature. As expected,
all of this analysis carries over to the εθ 
= 0 case, albeit without the analytic transparency
which was the motivation for this section’s treatment of the problem. Having detailed the
mathematics of grain boundary wetting, we can perform simulations of two abutting drops
of differing orientation equilibrating in an undercooled melt. If we numerically prohibit the
drops from undergoing coarsening (which will cause one to shrink and one to grow) we can
examine the metastable state where both drops co-exist for all time (figure 15). As we can see,
as �θ increases to �θc the drops separate, and the boundary wets.

2.7.2. Grain impingement and coarsening. Having studied some of the steady state properties
of grain boundaries within our model, we can now perform larger-scale simulations, which
ultimately evolve like a two-dimensional foam. In figure 16 (upper row) we show an isothermal
two-dimensional simulation of the full model, with many nuclei introduced simultaneously
into an undercooled melt. (Details of the simulation are given by Warren et al (2003a).) The
grains impinge and then coarsening occurs, all within the same governing equations. All
of the dynamics discussed above, except grain rotation, are in evidence: (i) solidification,
(ii) grain boundary formation (iii) and grain coarsening. Grain rotation is suppressed with our
parameter choices. The relative dominance of rotation versus grain boundary motion can also
be investigated, by separately controlling the timescales for each phenomenon. In figure 16
(lower row), rotation dominated relaxation of the microstructure is shown. Note that grain
rotation in the solid phase is a phenomenon relevant to nanocrystals.

2.8. Effect of walls

Solidification in the presence of walls is of great practical importance. In casting, solidification
usually starts by heterogeneous crystal nucleation on the walls of the mould (e.g. Kurz and
Fisher 1989). With the exception of extremely pure samples, even volume nucleation happens
mostly via a heterogeneous mechanism (on the surface of floating foreign particles) (Turnbull
1952). Particulate additives are widely used as grain refiners, to reduce grain size by enhancing
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Figure 16. Grain boundary relaxation in model A. Time increases from left to right. Upper row:
grain impingement and boundary evolution dominated by grain boundary migration. Lower row:
evolution dominated by grain rotation. (Mθ is reduced by 100 from the upper row.) Different
colours denote different grain orientations.

the nucleation rate. Nonetheless, heterogeneous nucleation is probably the only stage of
solidification where the micro-mechanism of the process is largely unknown. While the phase
field method has been used to address problems that incorporate heterogeneous nucleation,
this process is usually mimicked introducing supercritical particles into the simulation window
(Lo et al 2001, 2003). Recently, however, steps have been made towards a physical modelling
of heterogeneous nucleation within the phase field theory. Castro (2003) introduced walls
into a single-order-parameter theory by assuming a no-flux boundary condition at the interface
(n∇φ = 0, where n is the normal vector of the wall), which results in a contact angle of 90◦ at
the wall–solid–liquid triple junction. Langevin noise is then introduced to model nucleation.
It has been found that the presence of walls enhances nucleation, and thus the internal corners
are places where nucleation is more likely to occur.

Prescribing (n∇φ) = 0 and (n∇c) = 0 at the wall perimeter, we introduced chemically
inert surfaces into model B, and performed simulations to address heterogeneous volume
nucleation on foreign particles (a more detailed description than the ‘pinning centres’), on rough
surfaces, and in confined space (porous matter and channels). A few preliminary results, which
illustrate that various complex phenomena can be addressed this way, are shown in figure 17.
Further work will explore the kinetics of these processes, and extend the modelling to arbitrary
contact angles.

3. Summary and future directions

In the previous section we demonstrated the capability of the phase field method to describe
complex polycrystalline morphologies. This includes nucleation and growth problems in
anisotropic systems, the effect of particulate additives and trapped disorder on growth
morphologies, solidification in confined space, and many others. However, systematic studies
are needed on all areas discussed here (e.g., mapping of possible morphologies, study of
transformation kinetics in the presence of walls, etc). Of particular interest to us is the
validation of the models that include random branching. This requires the collection of
statistics on the morphologies both in theory and experiment, as these patterns may have
only statistical similarity. Straightforward extensions of the work performed with models
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Figure 17. Solidification in the presence of walls/particles in model B. Upper row: heterogeneous
nucleation on rough surfaces (walls are grey). Central row: heterogeneous nucleation and
crystallization in porous matter (blue—particles of porous matter, bright yellow—crystal, khaki—
liquid). Note that nucleation happens in the notches between particles of the porous matter. Bottom
row: dendritic solidification in a two-dimensional orientation selector (pigtail) mimicking the
casting of single-crystal components. Left, composition field (blue—solidus, yellow—liquidus,
grey—mould); right, orientation field (colouring is the same as in the right panel of figure 5,
white—mould). Crystallization starts on the left with several crystallographic orientations, but
only a single crystallographic orientation survives the meandering channel to reach the volume on
the right.

B and C may include coupling to hydrodynamics (an essential step to study particle–front
interaction), and dynamically changing temperatures. The largest theoretical challenge is
perhaps the generalization of the model to three dimensions. This requires three orientational
fields (e.g., two polar angles that set the fast growth direction in 3D, and a third angle that
specifies the rotation of the crystal around this axis). The simple model of elasticity that these
models inherently contain should be refined using the continuously developing inventory of
phase field models for solid-state transformations (e.g., Khachaturyan 1983, Wen et al 1999,
Löchte et al 2000, Artemev et al 2000, Wang et al 2003). The broad interface remains an issue
(enhanced solute trapping, etc). New approaches (e.g. Amberg 2004) should address some
of the numerical issues associated with too thick interfaces, while interaction with atomistic
scale modelling will help to fix the model parameters for quantitative calculations.

Regarding future directions, we mention a most remarkable new approach to
polycrystalline solidifications: a new field theory by Elder et al (2002) that allows for
atomistic modelling of the solid–liquid transition on diffusive timescales. A negative square-
gradient term is balanced here by a positive fourth-order term, yielding homogeneous (liquid)
regions and crystalline (‘dots’ on lattice) regions in the phase diagram, with a first-order
phase transition in between. The model naturally incorporates crystal anisotropy, elastic and
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plastic deformations, grain boundaries, cracks, epitaxy, etc (Elder and Grant 2004). Its results
are consistent with the Read–Shockley theory of grain boundary energy and the Matthews–
Blakeslee theory for misfit dislocations in epitaxy. The model has been applied for eutectic
solidification and dendritic growth (Elder 2004). With the ever-increasing power of computers,
this approach is expected to take over many of the tasks of the phase field theory.

Summarizing, the authors believe that, in the foreseeable future, phase field theories, and
field theoretic methods in general, will be among the most powerful tools of computational
materials science.
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Appendix. Phase field models used in preparing the illustrations

We specify here three models (models A, B, and C), which show rather similar features;
however, they differ in important details such as the form of the free energy functional. Note
that the models termed here as models A–C differ from models A–C of the usual Hohenberg
and Halperin (1977) classification. Once the free energy functional is defined, the equations
of motion for the three fields are obtained as follows.

φ̇ = −Mφ

δF

δφ
= Mφ

{
∇

(
∂ f

∂∇φ

)
− ∂ f

∂φ

}
+ ζφ

ċ = ∇Mc∇ δF

δc
= ∇

{
Dc(1 − c)∇

[(
∂ f

∂c

)
− ∇

(
∂ f

∂∇c

)]}
+ ζ j

θ̇ = −Mθ

δF

δθ
= Mθ

{
∇

(
∂ f

∂∇θ

)
− ∂ f

∂θ

}
+ ζθ

where Mi and ζi stand for the appropriate mobilities and Langevin-noise terms.

A.1. Model A by Warren et al (2003a)

We start with the free energy for the model of Warren et al (2003a):

F =
∫

d3r

{
ε2
φ

2
s2(ϑ − θ)|∇φ|2 +

ε2
θ

2
η(φ)|∇θ |2 + Hλ(φ)|∇θ | + f (φ, T )

}
(A.1)

where H and εθ specify the strength of the coupling between φ and ∇θ , while λ(φ) and η(φ)

are as yet unspecified, monotonically increasing functions of φ. The monotonic nature of λ(φ)
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and η(φ) is required if the effects of crystal orientation are to be reduced or eliminated in the
liquid phase. In what follows we take λ(φ) = η(φ) = 1−φ2. The free energy density f (φ, T )

is a double well in φ, with a bias favouring the solid or liquid phase depending on whether the
temperature is below or above the melting point of the material. The relation of the remainder
of the parameters to more familiar quantities, as well as the specific form of f (φ, T ) is made
more explicit in the section on model B, below.

With the removal of the terms in the free energy density in the integrand of equation (A.1)
that depend on the orientation, this model reduces to a simple phase field model of solidification.
The presence of the linear term |∇θ | (as opposed to higher-order powers in |∇θ |) is required for
grain boundaries that are localized at equilibrium; without this linear term the grain boundary
regions (where θ is spatially varying) spread without bound by relaxational dynamics. In
other words, stable grain boundaries of finite width do not exist in the model unless the free
energy density depends, to lowest order, linearly on |∇θ | (Kobayashi et al 2000). The linear
dependence on |∇θ | introduces a cusp into the total free energy density at ∇θ = 0. In addition
to the linear term, we include |∇θ |2. At least one term of higher order than linear is essential
for the dynamics to include grain boundary motion (Kobayashi et al 2000, Lobkovsky and
Warren 2001). As stated above, the dynamics of the system are relaxational, and we choose
to consider a pure material. This allows us to eliminate the concentration equation, but, if
we choose to look at non-isothermal systems, we then require a proper accounting of heat
flow. Using arguments of entropy production, one can develop self-consistent equations for
all the thermodynamic variables (Wang et al 1993). However, it is straightforward to write
out the phenomenological equation for temperature directly. The evolution equation for the
time-dependent temperature, T , is

∂T

∂ t
= DT∇2T +

L

c

∂φ

∂ t
,

where L is here the latent heat of freezing and c is the specific heat, and DT is the thermal
diffusivity.

Applying the above relaxation hypothesis yields the following two equations for the phase
field φ and orientation field θ :

∂φ

∂ t
= Mφ

[
ε2
φ∇2φ − ∂ f

∂φ
− 2Hφ|∇θ | − ε2

θφ|∇θ |2
]

P(|∇θ |)φ2 ∂θ

∂ t
= Mθ

{
∇

[
φ2

(
H

|∇θ | + ε2
θ

)
∇θ

]}
,

(A.2)

where we have introduced the function P to control the kinetics of the angle variable in grain
and grain boundary regions by choosing

P(εθ |∇θ |) with P(w) = 1 − e−βw +
µ

εθ

e−βw.

The parameters β and µ are introduced to separately control the mobility of grain boundaries
(β) and the rotation rate of grains (µ). Note that all parameters appearing in equations (A.2)
are non-dimensionalized in the following manner:

εθ = al0ε̃θ ; εφ = al0ε̃φ; H = al2
0 H̃ ; Mφ = Mφ/a2t0;

Mθ = Mθ /a2t0; r = (x, y, z) = (l0 x̃, l0 ỹ, l0 z̃)

where tildes indicates dimensionless parameters, a2 is eight times the height of the energy
barrier between liquid and solid at the melting point, and l0 and t0 are convenient length and
timescales, respectively. The solution of these equations requires some care, and the interested
readers are referred to Warren et al (2003a).



Topical Review R1231

A.2. Model B by Gránásy et al (2002a, 2002b)

This model builds on earlier results by Warren and Boettinger (1995) and Kobayashi et al
(1998).

The free energy functional is

F =
∫

d3r

{
ε2
φT

2
s2(ϑ − θ)|∇φ|2 +

ε2
c T

2
|∇c|2 + w(c)T g(φ) + [1 − p(φ)][ fS(c, T )

+ fori(|∇θ |)] + p(φ) fL(c, T )

}
,

where

ε2
φ = 6

√
2γA,BδA,B

TA,B
, w(c) = (1 − c)wA + cwB, wA,B = 12γA,B√

2δA,BTA,B

,

g(φ) = 1
4φ2(1 − φ)2, g′(φ) = φ3 − 3

2φ2 + 1
2 φ

p(φ) = φ3(10 − 15φ + 6φ2), p′(φ) = 30φ2(1 − φ)2,

fori = H T |∇θ |
s(ϑ − θ) = 1 + s0 cos(mϑ − 2πθ), ϑ = arctan[(∇φ)y/(∇φ)x ].

Here εφ and εc are the coefficients of the square-gradient term for the fields φ and c; wi is the
free energy scale for the i th pure component (i = A, B); s, g and p are the anisotropy function,
the quartic double-well function and the interpolation function. γi , δi , and Ti are the interface
free energy, interface thickness, and melting point for the i th pure component (i = A, B). ϑ

is the inclination of the normal vector of the interface in the laboratory frame. H determines
the free energy of the low-angle grain boundaries. s0 is the amplitude of the anisotropy of the
interface free energy, while m is the symmetry index (m = 6 for sixfold symmetry).

The dimensionless form of the deterministic part of the equations of motion has been
obtained by multiplying the original equations by ξ2/Dl, where ξ is a convenient length scale
used for de-dimensionalizing, and Dl is the diffusion coefficient in the liquid.

(a) Phase field:

˜̇φ = Mφε2
φT

Dl

[
∇̃(s2∇̃φ) − ∂

∂ x̃

{
s

∂s

∂ϑ

∂φ

∂ ỹ

}
+

∂

∂ ỹ

{
s

∂s

∂ϑ

∂φ

∂ x̃

}

− ξ2 w(c)T g′(φ) + p′(φ){ fL(c, T ) − fS(c, T ) − fori(|∇θ |)}
ε2
φT

]
.

(b) Concentration field:

˜̇c = ∇̃
{

vm

RT
λc(1 − c)∇̃

[
(wB − wA)T g(φ) + [1 − p(φ)]

∂ fS

∂c
(c, T ) + p(φ)

∂ fL

∂c
(c, T )

− ε2
c T

ξ2
∇̃2c

]}
.

(c) Orientation field:

˜̇θ = χ

[
∇̃

{
[1 − p(φ)]

∇̃θ

|∇̃θ |

}
− ε2

φ

H ξ
s
∂s

∂θ
|∇̃φ|2

]
.

Here quantities with tildes are dimensionless. The phase field mobility can be anisotropic,
Mφ = Mφ,0{1 + δ0 cos[m(ϑ − θ)]}, where Mφ,0 is the average value of the phase field
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mobility and δ0 is the amplitude of the anisotropy. The concentration equation has been
obtained using Mc = (vm/RT )Dc(1 − c) as the mobility of the concentration field, where
vm is the average molar volume, and D = Ds + (Dl − Ds)p(φ) is the diffusion coefficient,
Ds the diffusion coefficient in the solid, while λ = D/Dl the reduced diffusion coefficient.
In the last equation, χ = Mθ ξ H T/Dl is the dimensionless orientational mobility, while
Mθ = Mθ,s + (Mθ,l − Mθ,s)p(φ).

The stochastic part of the equations of motion: Gaussian noises of amplitude ζ =
ζs +(ζl−ζs)p(φ) are added to the non-conserved fields, where ζl and ζs are the amplitudes in the
liquid and solid, while in the case of the conserved concentration field, random concentration
fluxes are added to the equation of motion.

Remarks:

(i) The second term in the equation for orientation field requires some care. It is negligible
if the physical interface thickness (∼1 nm) is used. When, due to limitations of computer
power, a broad interface is used, it leads to artefacts. To avoid this difficulty in the
simulations, we adopt one of the following measures: (a) perform the calculations in the
presence of only kinetic anisotropy (then this term is zero); (b) we omit this term.

(ii) The governing equations have been solved numerically using an explicit finite difference
scheme. Unless stated otherwise periodic boundary conditions were used. Stable solution
of the orientational equation needs about 1/20 of the time step required for the stable
solution of the other fields. A parallel code has been developed that relies on the message
passing interface (MPI) protocol and was run on a PC cluster consisting of 75 nodes and
a server machine.

A.3. Model C (Gránásy and Pusztai 2004)

This differs from model B in that a new form of the orientational free energy is assumed:

fori = H T

2ξ0
{x F0 + (1 − x)F1}

F0 =
{ | sin(2πmξ0|∇θ |)| for ξ0|∇θ | < 3

4m
1 otherwise

F1 =
{ | sin(2πnξ0|∇θ |)| for ξ0|∇θ | < 1

4n
1 otherwise

where the free energy of small-angle grain boundaries scales with H T ; ξ0 = �x is the
correlation length of the orientation field. Note that F0 has a minimum at ξ0|∇θ | = 1/2m, and
saturates at ξ0|∇θ | = 3/4m; while F1 increases monotonically, and saturates at ξ0|∇θ | = 1/4n.
Thus fori has minima at ξ0|∇θ | = 0 (absolute) and 1/2m (local); i.e., m determines the
branching angle. In the computations n = 1/2 has been set.

While the equations of motion for the phase field and concentration remain unchanged
(only the actual fori has to be inserted into the former), the deterministic part of the equation
of motion for the orientation field takes the following form:

˜̇θ = χ

[
∇̃

{
[1 − p(φ)]π[x F̃0m + (1 − x)F̃1n]

∇̃θ

|∇̃θ |

}
− ε2

φ

H ξ
s
∂s

∂θ
|∇̃φ|2

]

where

F̃0 =
{

sgn[sin(2πmξ̃0|∇̃θ |)] cos(2πmξ̃0|∇̃θ |) for ξ̃0|∇̃θ | < 3
4m

0 otherwise
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F̃1 =
{

sgn[sin(2πnξ̃0|∇̃θ |)] cos(2πnξ̃0|∇̃θ |) for ξ̃0|∇̃θ | < 1
4n

0 otherwise

while ξ̃0 = ξ0/ξ .
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Division) pp 629–36

Gránásy L and Pusztai T 2002 J. Chem. Phys. 117 10121–4



R1234 Topical Review

Gránásy L and Pusztai T 2004 unpublished
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Gránásy L, Pusztai T, Tóth G, Jurek Z, Conti M and Kvamme B 2003b J. Chem. Phys. 119 10376–82
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